
Styled Components Cheat Sheet

scalablecss.com

Styled Components is a library for React &
React Native to write and manage your CSS.

It’s an extremely popular solution for
managing CSS in React, with around 8
million npm downloads/month and 30k
stars in Github.

A familiarity and understanding of React is
recommended before diving into Styled
Components.

Benefits of styled components:
It’s plain CSS. Yes, you’re writing the CSS in a JS file, but the
CSS syntax is unchanged.

Vendor prefixes are automatically added when using Styled
Components, improving performance across browsers.

You don’t write any class names, whatsoever. Class names
are generated automatically, so there’s no need to manage a
CSS class naming methodology like BEM.

All unused CSS and styling gets removed automatically

Installing styled-components

Building your first styled component
Inside a React component, import styled and add the following code:

Using props to customize Styled Components

Using media-queries to make your
styled-components responsive

Handling hover states and other pseudo-
selectors with Styled Components
Similarly to adding media queries to your Styled
Components, adding pseudo selectors is pretty
straightforward.

For example, adding a hover state to our <Button />
component would look like this:

Creating global styles
You might want to set global styles, like:

• Set a font-family for all your typography
• Set the background color on every page
• Override some browser default styling

Styled Components has a solution for global styles using the
createGlobalStyle function.

First, navigate to the component which is at the top of your
React tree.

This isn’t going to apply the styles to the project yet.

Now we need to use the GlobalStyle component to apply the
global styles to the application.

© Copyright Scalable CSS 2020

Imagine you have a <Button /> component, and you need to style
different variants of that button (primary, secondary, danger, etc).

Styled Components have an elegant solution for this, where you leverage
props to make your component styles dynamic:

Thankfully, making your Styled Components responsive is
super simple.

Add media queries inside your template literal, like this:

And now, inside our <Button /> component, we can add the
dynamic styles:

Handling props like this works in some use-cases, but it can get
messy if you have multiple props (e.g. primary, secondary,
danger, etc.) as well as multiple lines of CSS.

Often, it makes more sense to import { css } from styled-
components like this:

To get started with styled-components, you first need to install it into your project:

Understand the code:
• Just like writing a React functional
component, declare the name of the
component with `const Button`

• importing `styled` gives us the Styled
Components functionality

• Notice the `a` after styled? This
represents the anchor HTML element:
<a>. When declaring a Styled
Component, you can use any HTML
element here (e.g. <div>, <h1>,
<section> etc.)

You can also create styled components as standalone component files:

Understand the code:
• Importing React is not required here, as
you’re not writing any JSX
• Make sure you export the component so
it can now be used in other components.

Understand the code:
• Here, I’ve imported the Button
components (which is a Styled
Component)
• Notice how one of the <Button />
component passes a ‘primary’ prop. We’ll
use this to make the Button styles
dynamic

Understand the code:
• What’s happening here is you’re
interpolating a function that is returning a
CSS value (using a ternary operator)
based on the props.
• To put it simply: you’re conditionally
changing the CSS values based on the
props passed.

Understand the code:
• Notice how { css } is imported from
styled-components. This is required to
write multiple lines of CSS
• Writing conditional styles in this way
keeps your dynamic srtles separate for
different props.

Understand the code:
• To add media queries, simply nest the
media query inside the template literal
strings.

Understand the code:
• To add psuedo-selectors, simply nest
pseudo-selectors inside your template
literal strings

Understand the code:
• You need to apply global styles at the
top of your React tree, so find your
component at the top
• You’ll need to import
‘createGlobalStyle’ into your project
• Create a component for your global
styles (in our example, the component is
<GlobalStyle />)

Understand the code:
• Add your <GlobalStyle /> component at
the top of your React tree
• You’ll need to add a React fragment
around your <GlobalStyle /> and it’s
sibling components

And on every file that you use styled-components, you’ll need to add this import:

